44 research outputs found

    Lidar Observations of Elevated Temperatures in Bright Chemiluminescent Meteor Trails During the 1998 Leonid Shower

    Get PDF
    Seven persistent trails associated with bright fireballs were probed with a steerable Na wind/temperature lidar at Starfire Optical Range, NM during the 17/18 Nov peak of the 1998 Leonid meteor shower. These chemiluminescence trails were especially rich in Na. The average Na abundance within the trails was 52% of the background Na layer abundance, which suggests that the corresponding masses of the meteors were from 1 g up to 1 kg. CCD images show that the chemiluminescent emissions (including Na and OH) are confined to the walls of a tube, which expands with time by molecular diffusion. Lidar profiles within the trails show that the temperatures are highest at the edges of the tube where the airglow emissions are brightest. Approximately 3 min after ablation, temperatures at the tube walls are 20-50 K warmer than the tube core and background atmosphere. Neither chemical nor frictional heating provides a satisfactory explanation for the observations

    Gravity Wave Characteristics in the Lower Atmosphere at South Pole

    Get PDF
    A 4-year (1993-1996) temperature and wind data set obtained from over 2000 high-resolution balloon soundings at South Pole is used to study gravity wave characteristics in the atmosphere and lower stratosphere. Extensive analyses of energy density, spectra, and static stability are performed to present a comprehensive view of the gravity waves are ubiquitous and often fairly strong at the South Pole, even though the generation mechanisms are not clear. Gravity wave characteristics are, in general, similar to those obtained at other high-latitude southern hemisphere stations. Potential energies vary between about 0.5 J/kg and 5 J/kg with season and altitude. Variations in kinetic energies are not well correlated with potential energy variations and range from 1 J/kg to 11 J/kg. We observe significant seasonal variations of the slope and magnitude of the vertical wavenumber spectrum of temperature fluctuations, especially in the stratosphere. In general, the gravity waves in the stratosphere are stronger (weaker) in austral spring (fall). Stability analysis shows that instabilities are more likely to occur in the troposphere than in the stratosphere. The probability of wave instability is 13.7% in the troposphere and 5.4 % in the stratosphere. This is due to the less stratification of the troposphere, where the buoyancy period averages 8.3 min compared to 4.9 min in the stratosphere. Dynamic (shear) instability is more likely to occur than convective instability (11% versus 2.6% in the troposphere and 4.7% versus 0.7% in the stratosphere), due to the prevailing strong wind shear. The instability probabilities vary seasonally with the austral winter exhibiting the probability of instabilities (dynamic and convective instabilities combined) in both the troposphere and stratosphere

    Lidar observations of polar mesospheric clouds at South Pole: Seasonal variations

    Get PDF
    Polar mesospheric clouds (PMCs) were observed above the geographic South Pole by an Fe Boltzmann temperature lidar from 11 Dec 99 to 24 Feb 00. During this 76-day period 297 h of observations were made on 33 different days and PMCs were detected 66.5% of the time. The mean PMC peak backscatter ratio, peak volume backscatter coefficient, total backscatter coefficient, layer centroid altitude, and layer rms width are 50.59 q- 2.33, 2.70 q- 0.12x10 -9 m-‱sr -‱, 3.61 q- 0.22x10 -6 sr -‱, 85.49 q- 0.09 km, and 0.71 q- 0.03 km, respectively. The PMCs are highest near summer solstice when upwelling over the pole is strongest. The altitudes are 2-4 km higher than that typically observed elsewhere, including the North Pole. After solstice the mean altitudes decreases by about 64 m/day as the upwelling weakens.Ope

    First Lidar Observations of Middle Atmosphere Temperatures, Fe Densities, and Polar Mesospheric Clouds Over the North and South Poles

    Get PDF
    An Fe Boltzmann temperature lidar was used to obtain the first measurements of middle atmosphere temperatures, Fe densities, and polar mesosphericlouds (PMCs) over the North and South Poles during the 1999-2000 summer seasons. The measured temperature structure of the mesopause and lower thermosphere regions in mid-summer at both Poles is consistent with the MSIS90 model. The density profiles of the normal Fe layer between 80-100 km at summer solstice are similar at both the North and South Poles with maximum densities of about 2000 cm -a. Sporadic Fe (Fes) layers were observed at both Poles with peak densities at 106 km altitude. The maximum densities of the Fes layers were 232x10 a cm -a at North Pole and 6.52x10 a cm -a at South Pole. PMCs were detected above both Poles. The altitudes of PMCs over the South Pole were consistently 2-3 km higher than those observed over the North Pole.Ope

    Meteor Trail Advection Observed During the 1998 Leonid Shower

    Get PDF
    Sodium resonance lidar observations of meteor trails are reported from the 1998 Leonid shower experimental at the Starfire Optical Range Kirtland Air Force Base, NM (35.0Âș N, 106.5Âș W ). The lidar was operating in a spatially scanning mode that allowed tracking for up to one half-hour. Three trails are presented here whose motion allowed inference of radial as well as vector wind components and apparent diffusivities. The winds are derived independently using the narrow linewidth sodium (Na) resonance Doppler lidar technique and are compared with the tracking results

    Flip chip packaging of digital silicon photonics MEMS Switch for cloud computing and data centre

    Get PDF
    We report on the flip chip packaging of Micro-Electro-Mechanical System (MEMS)-based digital silicon photonic switching device and the characterization results of 12 × 12 switching ports. The challenges in packaging N2 electrical and 2N optical interconnections are addressed with single-layer electrical redistribution lines of 25 ”m line width and space on aluminum nitride interposer and 13° polished 64-channel lidless fiber array (FA) with a pitch of 127 ”m. 50 ”m diameter solder spheres are laser-jetted onto the electrical bond pads surrounded by suspended MEMS actuators on the device before fluxless flip-chip bonding. A lidless FA is finally coupled near-vertically onto the device gratings using a 6-degree-of-freedom (6-DOF) alignment system. Fiber-to-grating coupler loss of 4.25 dB/facet, 10–11 bit error rate (BER) through the longest optical path, and 0.4 ”s switch reconfiguration time have been demonstrated using 10 Gb/s Ethernet data stream

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic
    corecore